Functions with the One-dimensional Holomorphic Extension Property

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contact Geometry of One Dimensional Holomorphic Foliations

ABSTRACT. Let V be a real hypersurface of class Ck, k ≥ 3, in a complex manifold M of complex dimension n + 1, HT (V ) the holomorphic tangent bundle to V giving the induced CR structure on V . Let θ be a contact form for (V,HT (V )), ξ0 the Reeb vector field determined by θ and assume that ξ0 is of class Ck. In this paper we prove the following theorem (cf. Theorem 4.1): if the integral curves...

متن کامل

Holomorphic Extension Associated with Fourier–legendre Expansions

In this article we prove that if the coefficients of a Fourier–Legendre expansion satisfy a suitable Hausdorff–type condition, then the series converges to a function which admits a holomorphic extension to a cut–plane. Furthermore, we prove that a Laplace–type (Laplace composed with Radon) transform of the function describing the jump across the cut is the unique Carlsonian interpolation of th...

متن کامل

Separate Holomorphic Extension along Lines and Holomorphic Extension from the Sphere to the Ball

We give positive answer to a conjecture by Agranovsky in [1]. A continuous function on the sphere which has separate holomorphic extension along the complex lines which pass through three non-aligned interior points, is the trace of a holomorphic function in the ball. MSC: 32F10, 32F20, 32N15, 32T25

متن کامل

Topological Pressure for One-dimensional Holomorphic Dynamical Systems

For a class of one-dimensional holomorphic maps f of the Riemann sphere we prove that for a wide class of potentials φ the topological pressure is entirely determined by the values of φ on the repelling periodic points of f . This is a version of a classical result of Bowen for hyperbolic diffeomorphisms in the holomorphic non-uniformly hyperbolic setting.

متن کامل

Fixed Point Theorems for Infinite Dimensional Holomorphic Functions

This talk discusses conditions on the numerical range of a holomorphic function defined on a bounded convex domain in a complex Banach space that imply that the function has a unique fixed point. In particular, extensions of the Earle-Hamilton Theorem are given for such domains. The theorems are applied to obtain a quantitative version of the inverse function theorem for holomorphic functions a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Siberian Federal University. Mathematics & Physics

سال: 2019

ISSN: 2313-6022,1997-1397

DOI: 10.17516/1997-1397-2019-12-4-439-443